

Sign Up for Turf Alerts!

MONITORING FOR PEST PROBLEMS, A NEW UAV PERSPECTIVE

Charles H. Peacock Crop & Soil Sciences Department NC State University

* Intro

* SRS Data

* LP #15

* LW disease plots => Pythium plots, untreated * Symmary 7/6 \$ 7/20

supervised analysis of spectral profile Eclassification

Acknowledge

- Skyler Edenhart-Pepe, MS, Aerospace Engineering
- John Wall, PhD, Geographic Information Systems

DIGITAL IMAGE ANALYSIS

- Ability to take a digital image and analyze it for contrasts in color by using software to filter out certain wavelengths
- OR
- Taking a digital image with a camera that captures reflections for wavelengths other than in the visual spectrum
- Simply using light reflectance as an indirect way to detect differences

RESEARCH CONDUCTED

OVER THE LAST 20 YEARS

- Moisture stress
- Nitrogen and phosphorus stress
- Turf quality
- Disease activity

RESEARCH CITATIONS

 Anderson and Fermanian (2009) found that brown patch could be detected using multispectral analysis 2.5 to 25 hours before visual symptoms leading them to state, "Direct sensing of the creeping bentgrass foliar canopy with the multispectral camera and the standard digital camera provide the means to detect the onset of *Pythium* blight and brown patch in creeping bentgrass, before significant changes in the appearance of turfgrass health were detected."

RESEARCH CITATIONS

 Horvath and Vargas (2001) found that DIA was a useful tool to calculate the area under disease progress curve for dollar spot in measuring the severity of the disease

- Unmanned Aerial Vehicle
- Unmanned Aerial System
- Unmanned Aerial Platform

- A UAS platform X-rotor UAV equipped with First Person View, temperature and humidity sensors, GPS, high definition camera and a MicaSense RedEdge multi-spectral camera is being used to collect digital information over a range of electromagnetic radiation wavelengths
- Computer flight controller allows for autonomous flight over an area that has been gridded

UAV=UAP=DRONE

UAV=UAP=DRONE

UAV=UAP=DRONE

WHY A COPTER DRONE?

- Stability each motor is individually computer controlled to adjust for changes in wind velocity and direction
- Power can carry more weight
- Ability to hover

- Digital image data is being analyzed using sophisticated software to compute an array of
 - Simple Ratio Vegetation Indices
 - Normalized Difference Vegetation Indices
 - Disease monitoring
- Software is very expensive site license for Pix4D is \$10,000

VEGETATION INDICES

- Marco Volterrani University of Pisa
- 17 different algorithms to calculate vegetative indices depending on which wavelengths of reflectance are used

RESEARCH CITATIONS

RESEARCH ARTICLE

Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses

Lisa Caturegli¹*, Matteo Corniglia¹, Monica Gaetani¹, Nicola Grossi¹, Simone Magni¹, Mauro Migliazzi², Luciana Angelini¹, Marco Mazzoncini¹, Nicola Silvestri¹, Marco Fontanelli¹, Michele Raffaelli¹, Andrea Peruzzi¹, Marco Volterrani¹

1 Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy, 2 GLOBI Hi-Tech Srl, Genova, Italy

* lisa.caturegli@gmail.com

RESEARCH CITATIONS

RESEARCH CITATIONS

OUR WORK

Objectives

- 1. Compare visual data with hand-held instrument data with data collected from a UAV
- 2. Compare data collected by our UAV with a commercial unit
- Determine if data collected by our UAV on research plots can be used in monitoring for disease development

Our Work – Sandhills Research Station

- 'Tifway' bermudagrass
- Nine fertilization treatments and a control
- Data collected
 - Turf quality visual
 - Turf color visual
 - \circ NDVI aerial
 - NDVI ground, hand held unit
 - $_{\odot}$ Tissue samples for N

NDVI Measurements vs. Turf Health Metrics R²

Platforn	n, Clipping Status, Altitude	Color	Turf Quality	N
Ground	Pre-Clipping	0.73	0.60	0.66
	Post-Clipping	0.67	0.44	0.54
	Pre-Clipping, 100 ft alt.	0.84	0.65	0.49
UAV	Post-Clipping, 100 ft alt.	0.70	0.39	0.48
	Pre-Clipping, 150 ft alt. Post-Clipping, 150 ft alt.	0.83	0.63	0.50
Ground UAV	Pre-Clipping Post-Clipping Pre-Clipping, 100 ft alt. Post-Clipping, 100 ft alt. Pre-Clipping, 150 ft alt. Post-Clipping, 150 ft alt.	0.73 0.67 0.84 0.70 0.83 0.63	0.60 0.44 0.65 0.39 0.63 0.34	

Ground vs. UAV NDVI Measurements R²

		Ground	
		Pre-Clipping	Post-Clipping
	Pre-Clipping, 100 ft alt.	0.65	0.69
11.417	Post-Clipping, 100 ft alt.	0.56	0.81
UAV	Pre-Clipping, 150 ft alt.	0.67	0.69
	Post-Clipping, 150 ft alt.	0.51	0.77

NDVI Measurements vs. Turf Health Metrics R²

Platform, Clipping Status, Altitude		Color	Turf Quality	N
Ground	Pre-Clipping	0.79	0.65	0.58
	Post-Clipping	0.02	-0.11	-0.05
	Pre-Clipping, 100 ft alt.	0.87	0.69	0.76
UAV	Post-Clipping, 100 ft alt. Pre-Clipping, 150 ft alt. Post-Clipping, 150 ft alt.	- 0.87 0.87	- 0.70 0.69	- 0.72 0.73

Ground vs. UAV NDVI Measurements R²

	Ground	
	Pre-Clipping	Post-Clipping
Pre-Clipping, 100 ft alt.	0.75	0.15
Post-Clipping, 100 ft alt.		
Pre-Clipping, 150 ft alt.	0.74	0.15
Post-Clipping, 150 ft alt.	0.75	0.17
	Pre-Clipping, 100 ft alt. Post-Clipping, 100 ft alt. Pre-Clipping, 150 ft alt. Post-Clipping, 150 ft alt.	Groun Pre-Clipping, 100 ft alt. 0.75 Post-Clipping, 100 ft alt Pre-Clipping, 150 ft alt. 0.74 Post-Clipping, 150 ft alt. 0.75

Results – Lonnie Poole Golf Course Data collected October, 2017

- Overseeded bermudagrass
- Hole #15
- Compare data collected by our UAV with that of a commercial company – Precision Hawk

Our Work – Lonnie Poole Golf Course

Demo Flight at Lonnie Poole Gold Course, Hole #15

1.0 Technical Details

Survey Date: Tuesday, October 31, 2017 Survey Time: 14:32 EDT Report Date: Tuesday, November 14, 2017 Location: Hole #15, Lonnie Poole Golf Course Raleigh, North Carolina Platform:X8 MulticopterSensor:MicaSense RedEdgeAltitude:50 mPixel Resolution:3.5 cm

2.0 Processing Details

Processing Software: Pix4D Processing Method: Agriculture Multispectral

Post-Processing Software: ArcGIS 10.3.1Raster Variant Processed:No AlphaBands Processed:Blue, Green, Red, Red Edge, Near-InfraredBit-depth:16-bit, unsigned

Normalized Difference Vegetation Index =

Equations Used:

Near Infrared – Red

Near Infrared + Red

Results – Lonnie Poole Golf Course Data collected October, 2017

- NDVI our UAV: range 0.87 to 0.90
 o average = 0.89
- NDVI Precision Hawk: range 0.46 to 0.54
 o average = 0.51

OUR WORK – Disease detection

Disease Detection – RGB Natural Color Image

Disease Detection – Spectral Profile

Disease Detection – Brightness Correction

Disease Detection – Substituting NIR for Red

Disease Detection – Substituting Red Edge for Red

Disease Detection – Using Spectral Editor 5 Band Image

Disease Detection – Radiometric Enhancement

Disease Detection – NIR & RE Band Reflectance Differences

Disease Detection – ERDAS Imagine Software Unsupervised Classification

- Normal Green
- Disease Under Pressure Gray
- Disease Present Yellow
- Disease severe Red

Disease Detection – ERDAS Imagine Software

unsup0714100ft.img : Layer_1

Disease Detection – ERDAS Imagine Software

709705.24, 3957462.36 (UTM / WGS 84)

NC STATE

EXTENSION

- Out of 200 classes, the clustering algorithm with 95% convergence threshold and 10 iterations made good distinction of Pythium in 39 classes, 4 severe
- Red severe disease Class 30 0.02196 acre
 Class 37 0.02313 acre
 - Class 57 0.02462 acre
 - Class 64 0.01993 acre

Why should you be at all interested in this?

 NDVI – 19 WAYS TO CALCULATE THIS DEPENDING ON WHAT SPECTRAL REFLECTANCE WAVELENGTHS YOU USE!

- CAN WE CORRELATE DIGITAL IMAGE ANALYSIS
 WITH...
 - Leaf chlorophyll?
 - Leaf nitrogen?
 - Leaf phosphorus?
 - Leaf moisture?

- CAN WE CORRELATE DIGITAL IMAGE ANALYSIS WITH...
 - Leaf chlorophyll?
 - Leaf nitrogen?
 - Leaf phosphorus?
 - Leaf moisture?
- YES!

- CAN WE CORRELATE DIGITAL IMAGE ANALYSIS
 WITH...
 - Leaf chlorophyll?
 - Leaf nitrogen?
 - Leaf phosphorus?
 - Leaf moisture?
- YES!
- EVERYTHING must be ground verified!!

- WHAT DON'T WE KNOW?
- WHAT CAN MAKE A DIFFERENCE IN DATA INTERPRETATION?
 - Species differences
 - Time of day
 - Light conditions
 - Leaf surface moisture
 - Drone height above turf
 - Drone speed of flight